
1

INF 111 / CSE 121:
Software Tools and MethodsSoftware Tools and Methods

Lecture Notes for Summer Quarter 2008
Michele Rousseau

Lecture Notes 7 - UML

Announcements
Quiz #3- Thursday – What will it cover?
● All readings assigned since the last quiz
● Plus the readings not covered on the last quiz:
● Through slide 54 in today’s lecture

◘Configuration Management
◘ Only through the first break!

Readings on UML
● Another book on UML:

Lecture Notes 7 - UML 2

◘McLaughlin, Pollice & West (2006). Head First
Object-Oriented Analysis & Design. O’Reilly, 2006.

Assignments
● #1 has been graded
● Assignment #3 will be posted later this week

2

Last Lecture
Quiz #2
Configuration Management

Lecture Notes 7 - UML 3

Today’s Lecture
Finish up
●Configuration Management

◘Version Control◘Version Control

Modeling
●OOAD

◘UML
• Class Diagrams

Lecture Notes 7 - UML 4

• Class Diagrams
• Use Case Diagrams
• Sequence Diagrams

3

CASE tools for configuration management

CM processes are often standardised
● procedures are pre-defined

Lots of Docs and Data to be managedLots of Docs and Data to be managed
Tools make it possible
Can be…
● Individual tools
●Workbenches

Lecture Notes 7 - UML 5

● Environments

CM workbenches
Open workbenches
● Tools for each stage in the CM process are

integratedintegrated
◘ Includes organizational procedures

Integrated workbenches
● Provide whole-process, integrated support

◘ More tightly integrated tools easier to use.

Lecture Notes 7 - UML 6

◘Less flexible in the tools used
• Have to use tools built in

4

Change management tools
Change management is a procedural
process
● it can be modelled & integrated with a version

management system.management system.
Change management tools
● Form editor

◘ supports processing the CRFs
● Workflow system

◘ define who does what
◘ automates information transfer;

Lecture Notes 7 - UML 7

◘ automates information transfer;
● Change database

◘ manages change proposals
◘ linked to a VM system

● Change reporting system
◘ generates management reports (CR status)

Version management tools
Version and release identification
● assigns identifiers automatically for each new version

Storage management.
● Stores the differences between versions (the delta)● Stores the differences between versions (the delta)

◘ rather than all the version code.

Change history recording
● Record reasons for version creation.

Independent development
● Only one version at a time may be checked out for change.
● Parallel working on different versions.

Lecture Notes 7 - UML 8

Project support
● Manages groups of files associated with a project

◘ rather than just single files.

5

Delta-based versioning

Lecture Notes 7 - UML 9

Moving on to OOAD

Object Oriented Analysis & Design
(OOAD) using…(OOAD) using…
●UML – Part

◘Overview
◘More details in discussion

Lecture Notes 7 - UML 10

6

Brooks on Invisibility of Software
“Software is invisible and unvisualizable. Geometric abstractions
are powerful tools.”

“As soon as we attempt to diagram software structure, we find it to
tit t b t l l di t d h i dconstitute one, but several general directed graphs, superimposed

on upon another. The several graphs may represent the flow of
control, the flow of data, patterns of dependency, time sequence,
name-space relationships. These are usually not even planar,
much less hierarchical. Indeed, one of the ways of establishing
conceptual control over such structure is to enforce link
cutting until one or more of the graphs becomes hierarchical.”

Lecture Notes 7 - UML 11

What is UML?
Unified Modeling Language (UML)

Let’s break it down:
UnifiedUnified

In 1994,
● Two important methodologists Rumbaugh and Booch

decided to unify their approaches in 1994
In 1995, another methodologist, Jacobson,
joined the team
● His work focused on use cases

Lecture Notes 7 - UML 12

● His work focused on use cases

In 1997,
● the Object Management Group (OMG) started to

standardize UML

7

Models
Models are abstract representations

Contain essential characteristics and omit
non-essential detailsnon essential details

Models can be representations of the world
●Domain models
●Requirements

Models can be representations of software

Lecture Notes 7 - UML 13

Models can be representations of software
● Specifications
●Design
● Systems

Why make models?
Systems are complex and hard to understand
● The world, organizations, relationships, software

Models can make certain aspects more clearly
visible than in the real system

What can you do with models?
● Express your ideas and communicate with other

engineers
● Reason about the system

◘ detect errors

Lecture Notes 7 - UML 14

◘ detect errors
◘ predict qualities

● Generate parts of the real system
◘ Code
◘ Schemas

Can reverse engineer a system to make a model

8

What constitutes a good model?
A model should…
● Provide abstraction
● Render the problem in a format amenable to p

reasoning
● use a standard notation
● be understandable by clients and users
● lead software engineers to have insights about

the system
k th bl l bl t ti ll

Lecture Notes 7 - UML 15

● make the problem solvable computationally
◘ Be good enough

● Be a tool for communication

Architecture not usually a good
example…
…BUT
Imagine the building the Biltmoreg g

175,000 Sq. Ft. (that’s 4 acres)
250 rooms
35 bd/43 ba.
65 fireplaces

Lecture Notes 7 - UML 16

125,000 acre lot (that’s 195 sq mi)

9

Where would you begin?

A model helps reduce
l it

17

complexity
●Eliminates details that are not

necessary at the time
●Allows you to divide an conquer large

tasksLecture Notes 7 - UML

What constitutes a good model?
A model should…

Abstract away unnecessary details

Provide a means to reason about the system
Use a standard notation

Be understandable by clients and users

Lecture Notes 7 - UML 18

Lead software engineers to have insights
about the system

Be a tool for communication

10

Remember: It’s only a model
There will always be:

Phenomena in the application domain that
t i th d l (b t ti)are not in the model (abstraction)

Details in the application that are not in
the model (abstraction)
● Just what you need

A model is never perfect

Lecture Notes 7 - UML 19

A model is never perfect
● “If the map and the terrain disagree,

believe the terrain”

Modeling Languages
Natural language
● Extremely expressive and flexible
● Very poor at capturing the semantics of the

modelmodel
● Better used for elicitation, and to annotate

models for communication

Semi-formal notation
● Captures structure and some semantics
● Can perform (some) automated reasoning,

Lecture Notes 7 - UML 20

Can perform (some) automated reasoning,
consistency checking, animation, etc.

● Mostly visual - for rapid communication with a
variety of stakeholders

Examples: diagrams, tables, structured
English, etc.

11

Modeling Languages (2)
Formal notation
● very precise semantics, extensive reasoning

possible
● Can automate reasoning consistency checking● Can automate reasoning, consistency checking,

completeness checking, simulation, etc..
● Every detailed models)

Lecture Notes 7 - UML 21

Unified Modeling Language (UML)
UML is a …

● semi-formal graphical (visual) modeling language
● Object Modeling Language (OMD)j g g g ()
● A way to communicate details…

◘ Code
◘ Architecture

Uml is descriptive tries not to be
prescriptive

Lecture Notes 7 - UML 22

prescriptive

… essentially
it is a set of diagrams used to model the system

12

3 Common Way to Use UML

Sketch - Quick CommunicationQ

Blueprint – Complete Specification

Programming Language

A
bstraction

Lecture Notes 7 - UML 23

Programming Language

UML as a Sketch
Helps communicate some aspect of the
system
● Forward & reverse engineering

“Rough out” issues in the code
Not all of the code – just parts that you are
working on immediately
● Selective communication NOT complete

specification
Short discussion with a team

Lecture Notes 7 - UML 24

Short discussion with a team
● (10 min – 1 day)

Quick and Collaborative
Informal

13

UML as a Blueprint
Complete specification
● Forward & reverse engineering

Detailed design
All d i d i i l id t● All design decisions laid out

● Simplifies programming
Usually done by senior developer
More formally documented
CASE tools
● Forward Engineering

Lecture Notes 7 - UML 25

◘ Support diagramming
◘ Repository to store information

● Reverse Engineering
◘ Read source code Generate Diagrams

UML as a Programming Language
UML Diagrams compiled into exe code
● Automatic code generation

Sophisticated tool support● Sophisticated tool support

Lecture Notes 7 - UML 26

14

Types of UML Diagrams
Structure .

(6 types)
Class diagrams

Behavior .
(4 types)

Activity diagramClass diagrams
Object diagram
Package diagram
Composite structure
diagram
Component diagram

Activity diagram
Use Case diagram
State machine diagram
Interaction diagrams
● Sequence diagram
● Communication diagram
● Interaction overview

Lecture Notes 7 - UML 27

Component diagram
Deployment Diagram

diagram
● Timing diagram

If the appropriate diagram is not part of UML
use it anyways

UML & the S/W Process(Requirements)
●Use Cases

◘Describe how people interact with the
system

●Class Diagram
◘Drawn from a conceptual perspective
◘Can build up a rigorous vocab of the

domain
●Activity Diagram

Lecture Notes 7 - UML 28

y g
◘Shows the workflow of the org.

• Shows how s/w and human activities
interact

◘Context for Use Cases
◘Details of complex Use Cases

15

UML & the S/W Process(Requirements)

●State Diagram
◘Shows states and events that change◘Shows states and events that change

the state
• Can be useful with interesting life cycles

Lecture Notes 7 - UML 29

Communication is key
Customers may not be familiar with S/W techniques

Break the rules is it enhances Communication

UML & the S/W Process (Design)
Class Diagrams
●From a software perspective

◘Show classes & how they interrelate◘Show classes & how they interrelate
Sequence Diagrams
●For Common Scenarios

◘Pick most significant scenarios from Use
Cases

◘Use CRC cards or sequence diagrams

Lecture Notes 7 - UML 30

q g
to determine how the software should
behave

• Class, Responsibilities, Collaborators (CRC)
cards are index cards used to represent

» the responsibilities of classes
» interaction between the classes

16

UML & the S/W Process (Design)
Package Diagrams
●Show large-scale organization of the

systemy

State Diagrams
●Used for classes with complex

lifecycles

Deployment Diagrams

Lecture Notes 7 - UML 31

Deployment Diagrams
●Show the physical layout of the

software

All of these can be used for design

Class Diagrams

“A Class Diagram describes the types of
objects in the system and the various
ki d f t ti l ti hi th t i tkinds of static relationships that exist
among them”

Class Name

Attributes

Makes it easier
to see

the big picture

Lecture Notes 7 - UML 32

(Name:type)

Operations
(Name: Parameters)

– Know what a
class does at a

glance

17

Attributes and Operations

Attributes
●Describes a property as a line of text within

the class boxthe class box
● Attribute name corresponds to the name of a

field in a programming language
● Visibility Marker

◘Denotes whether an attribute is…
• Public (+) or Private (-)

O ti

Lecture Notes 7 - UML 33

Operations
● Actions that a class knows to carry out
●Corresponds to methods on a class

Attributes and Operations (2)

Operation & Method are not the same
thingthing
An Operation is the procedure declaration
A Method is the body of a procedure

Associations

Lecture Notes 7 - UML 34

Associations
●Describe the relationship between two classes

18

Example of a Class
public class Airplane {

public int speed;

Airplane

+speed: int

public void setSpeed (int speed) {
this.speed = speed;

}

public int getSpeed() {
t d

The diagram doesn’t tell
 h d d

getSpeed():Int
setSpeed(int)

Lecture Notes 7 - UML 35

return speed;
}

}

us what getSpeed and
setSpeed do or how

they do it

we made some
assumptions

Example 2 of a Class

Different level of abstraction

Student

Name: String
PhoneNumber
Address: String
Email: String

Lecture Notes 7 - UML 36

StudentID: Int

19

Associations -- Notation

Class A Class B
Multiplicity A Multiplicity BLabel

Role A Role B

Lecture Notes 7 - UML 37

Associations

Student

Name: String
Phone Number
Email Address: String
Student Number: Int

Address

Street
City
State
Zip Code

1 1

Lives at

Lecture Notes 7 - UML 38

Country

validate ()
outputLabel ()

20

Properties Attributes & Associations

Properties
● A structural feature of a class (fields in a class)()
●Can be represented 2 ways: Attributes or

Associations

Lecture Notes 7 - UML 39

Attributes and Associations
Different notations for the same thing

Example: Properties as Attributes
Simple Example

Book

+ author: String

+ title: String

+ isbn: Number

Lecture Notes 7 - UML 40

21

Properties as Associations

String Book Number+author
1..5 1 +isbn

1 1

titl

1

1

Lecture Notes 7 - UML 41

String

+title1

Attributes & Associations
Same properties different notations
When do you use which?
● Attributes for more simple properties (such as

Booleans or Dates)
● Associations for more significant properties

(such as Orders or Customers)
Associations show more – such as

Lecture Notes 7 - UML 42

Associations show more such as
multiplicities (covered in discussion)

22

Some Basic Concepts
Generalization (AKA Inheritance)
● For all instances of a superclass…

◘The subclass inherits…
• Attributes
• Operations
• Associations (we’ll talk about these later)

◘Whatever is true for the superclass is true for the
subclass

Lecture Notes 7 - UML 43

Inheritance lets you build classes based on other classes
without having to duplicate or repeat code.

Example of Generalization

Public class Jet extends Airplane {
private static final int MULTIPLIER =2;

Jet extends from the
Airplane class – that

means it inherits all of
l ’ b h

Airplane is the superclass for Jet.

Jet is the subclass Jet extends from the
Airplane class – that

means it inherits all of
l ’ b h

public Jet () {
super();

}
public void setSpeed (int speed) {

super.setSpeed(speed *
MULTIPLIER)
}

public void () {

Airplane’s behaviorAirplane’s behavior

Jet can modify the
behavior of the

superclass’ methods
it can also just call on

them.

Lecture Notes 7 - UML 44

public void () {
super.setSpeed (getSpeed() *2);

}
}

m

Note: getSpeed is not in here because Jet is
not modifying it

You can still call getSpeed on Jet

23

Generalization notation

Airplane

+speed: int

getSpeed():Int
setSpeed(int)

Jet

MULTIPLIERL int

accelerate()

Lecture Notes 7 - UML 45

Generalization is
notated using a big

open arrow

Person

Name: String
Phone Number
Email Address: String

Address

Street
City
State
Zi C d

1 1

Lives at

Zip Code
Country

validate ()
outputLabel ()

Lecture Notes 7 - UML 46

Student

StudentID: Int
Major

Lecturer

EmployeeID
Salary

24

Polymorphism
if an operation is applied to an object and
there are several alternative classes that
have the operation definedhave the operation defined

then the object to which the operation
is applied always determines the
operation that is executed.

IN OTHER WORDS..
All t bj t diff tl

Lecture Notes 7 - UML 47

Allows you to process objects differently
depending on their data type or class
● Redefine methods for a derived class

Polymorphism (Example)

Crispy Bowl

Sound() AddMilk()

Each pointer in
the bowl selects

a different
Crispy. The

d f h

Lecture Notes 7 - UML 48

Pop

Sound()

Crackle

Sound()

Snap

Sound()

sound of each
depends on the
kind of Crispy

Not the
abstract type

25

Class Diagrams
Association
There is an association between two classes if

an instance of one class must know about the
other in order to perform its workother in order to perform its work.

● A relationship between instances of the two
classes.

● In a diagram, an association is represented by
a link connecting two classes.

●may have a role name to clarify the nature of
the association

Lecture Notes 7 - UML 49

the association
● A navigability arrow on an association

indicates which direction the association can
be traversed or queried.
◘no navigability arrows are bi-directional.

Class Diagrams (2)
Aggregation
● An association in which one class belongs

to a collection.
● In a diagram, an aggregation is g , gg g

represented with a diamond end pointing to
the part containing the whole.
◘“is a part of”

Generalization
● An inheritance link indicating one class is a

superclass of the other

Lecture Notes 7 - UML 50

p
◘ “is a” or “is like a”

● A generalization is represented with a
triangle pointing to the superclass.

Class Diagrams provide a static model view of the system
Describes the Structure

26

Class Diagrams

Lecture Notes 7 - UML 51

Take a break!
Get some Coffee
Wakey-Wakey

When we return…

Modeling
●More on UML

Lecture Notes 7 - UML 52

27

Moving on

UML
●Use Case Diagrams●Use Case Diagrams
● Sequence Diagrams

Lecture Notes 7 - UML 53

Types of UML Diagrams
Structure .

(6 types)
Class diagrams

Behavior .
(4 types)

Activity diagramClass diagrams
Object diagram
Package diagram
Composite structure
diagram
Component diagram

Activity diagram
Use Case diagram
State machine diagram
Interaction diagrams
● Sequence diagram
● Communication diagram
● Interaction overview

Lecture Notes 7 - UML 54

Component diagram
Deployment Diagram

diagram
● Timing diagram

If the appropriate diagram is not part of UML
use it anyways

28

What is a Scenario
A Scenario is an example of what
happens when someone interacts with
the system y

Describes the system from an external
viewpoint

EXAMPLE Scenario – Medical Clinic:

Lecture Notes 7 - UML 55

● "A patient calls the clinic to make an
appointment for a yearly checkup. The
receptionist finds the nearest empty time slot in
the appointment book and schedules the
appointment for that time slot. “

What is a Use Case?
A use case is a reason to use the system
Again - describes the system from an external
viewpoint
“provides an outsider’s view”provides an outsider s view

A way of formalizing scenarios

A summary of scenarios for a single task or goal

Lecture Notes 7 - UML 56

Treat system as a black box
● Don’t incorporate design decisions

◘ Applies unnecessary constraints at design

Use Case Diagrams describe the dynamic behavior of the system

29

Use Case Basics
Actors
● who or what initiates the events involved in that task
● roles that people/objects/systems
(anything external to the system) play
● Represented as stick figures

Use Case – some system function
(a summary of related scenarios)
● Represented as an oval

Communication (or Communication
Association)

Lecture Notes 7 - UML 57

)
● A Connection between the actor and the use case
● Represented as a line

Use Case Diagrams
A collection of actors, use cases, and their associations

Use case diagrams are helpful in three areas
D i i f (i)Determining features (requirements)
● New use cases often generate new requirements.

◘ Can happen during design and system analysis

Communicating with clients
● Simple notation makes them easy to understand

Lecture Notes 7 - UML 58

Generating test cases
● The collection of scenarios for a use case may suggest a suite of

test cases for those scenarios

30

Use Case Diagram – Medical Clinic

Lecture Notes 7 - UML 59

Expanding Use Cases
A simple use case diagram can be
expanded to display more information

Use Cases can be developed iteratively and
incrementally

System boundaries
● separates the system from the external actors
● Represented as a rectangle

Lecture Notes 7 - UML 60

Represented as a rectangle

Generalizations
● shows that one use case is simply a special kind of

another
● Represented with an open triangle

31

Use Cases: Includes & Extends

Includes
● A relationship in which one use case (the p (

base use case) includes the functionality of
another use case

● Promotes reuse
● Should be used when the inclusion case is

common in two or more use cases

Lecture Notes 7 - UML 61

Both use similar notation, but are very different.
Represented with a dashed line and <<includes>> or <<extends>>

Includes & Extends
Extends:
● specifies that one use case (extension) extends

the behavior of another use case (base).
● reveals details about a system or application that y pp

are typically hidden in a use case
● the extension use case is not meaningful on its

own
● Describes behavior sequences that can change

the base case
● Each behavior sequence can be inserted into the

base use case at a different point, called an

Lecture Notes 7 - UML 62

p
extension point

● When do you use it
◘ A part of a use case that is optional system behavior
◘ A subflow is executed only under certain conditions
◘ A set of behavior segments that may be inserted in a

base use case

32

Lecture Notes 7 - UML 63

Use-Case Templates
Extended format of a use-case

Provides consistent documentation for
each use-case

Clarifies what you are describing

Lecture Notes 7 - UML 64

Many templates
● You will be provided one for your homework

33

Sequence Diagrams
One type of Interaction Diagram

Represent one scenarioRepresent one scenario
Describe the dynamic behavior of the
system
Details how operations are carried out
●What messages are sent when

O i d di t ti

Lecture Notes 7 - UML 65

Organized according to time
Objects listed from left to right
● According to when they take part in the

message sequence

Sequence Diagrams (2)

Good at
●describing the behavior of several

objects within a single use caseobjects within a single use case
●Showing collaborations between objects

Not good at precise definition of
the behavior

Lecture Notes 7 - UML 66

34

Sequence Diagrams:Basic Elements
Objects
● Lifelines: time goes from top to bottom

◘ represents the time that an object exists◘ represents the time that an object exists
● Activation bar: represents the duration of

execution of the message
◘ (if the object is active)

●May be several instances of one class

Messages

Lecture Notes 7 - UML 67

Messages
● Analogous to method calls in a program
●Can have parameters
●Represented by an arrow between activation

bars

Sequence Diagrams:Basic Elements
Special messages
●New — shown by position of object
●Delete — shown with a big X●Delete shown with a big X
●Return messages -- represented by a dashed

arrow
● Self-calls – when an object calls itself

A note is used to clarify details
●Represented with a dog-eared rectangle

(Notes can be put into any kind of UML
diagram)

Lecture Notes 7 - UML 68

35

Sequence Diagram Example:
Hotel Reservation

Lecture Notes 7 - UML 69

Elevator Example: Sequence Diagram

Lecture Notes 7 - UML 70
Sequence Diagram for Serving Elevator Button

36

Guards
When a condition must be met before a
message is sent
Represented by brackets on theRepresented by brackets on the
message line [guard]

Lecture Notes 7 - UML 71

Frames
Encloses a region of a sequence diagram
Guard specifies condition
● Allows you to specify several interactions within a guard

Can be divided into one or more fragments
Keyword specifies the type of frame
Keywords:
● opt -Optional fragment that executes if guard is true
● alt -Alternative fragment for mutual exclusive choice

between two or more message sequences
◘ Eg. If then Else

● loop -Loop fragment while guard is true
● par Fragments that execute in parallel

Lecture Notes 7 - UML 72

● par -Fragments that execute in parallel
● region -Critical region within which only one thread can

run

37

Frames/Combined Fragments

Lecture Notes 7 - UML 73

Frame: Option
Like a typical guard expanded

Lecture Notes 7 - UML 74

38

Opt Example

Lecture Notes 7 - UML 75

Frame: Alt

Lecture Notes 7 - UML 76

39

Alt
Example

Lecture Notes 7 - UML 77

Frame: Loop

Lecture Notes 7 - UML 78

40

Loop Example

StoreFront Cart Inventory

loop AddItem
ReserveItem

Checkout

Lecture Notes 7 - UML 79

PlaceItemInOrder

ProcessOrder
ConfirmOrder

What if you only have 1 msg to loop?
Use the “*” symbol
As long as the condition holds the
message is sentmessage is sent

Lecture Notes 7 - UML 80

41

Synchronous & Asynchronous Calls
Synchronous
● Some methods must finish before another

can start
Asynchronous
● Some methods can continue executing

while others run

Lecture Notes 7 - UML 81

Putting them together

Class Diagrams
ScenariosScenarios
Use Cases
Sequence Diagrams

H d th ll k t th

Lecture Notes 7 - UML 82

How do they all work together

UML is iterative & Incremental

42

Elevator Example: Basic Class
Diagram

Lecture Notes 7 - UML 83

Elevator Example: Use Case

Lecture Notes 7 - UML 84

43

Elevator Example: Scenario
Passenger pressed floor button
Elevator system detects floor button pressed
Elevator moves to the floor
Elevator doors openElevator doors open
Passenger gets in and presses elevator
button
Elevator doors close
Elevator moves to required floor
Elevator doors open

Lecture Notes 7 - UML 85

Passenger gets out
Elevator doors close

Elevator Example: Sequence Diagram

Lecture Notes 7 - UML 86
Sequence Diagram for Serving Elevator Button

44

Elevator Example: Sequence Diagram

Lecture Notes 7 - UML 87
Sequence Diagram for Serving Door Button

Elevator Example:
Revising the Class Diagram

Lecture Notes 7 - UML 88

